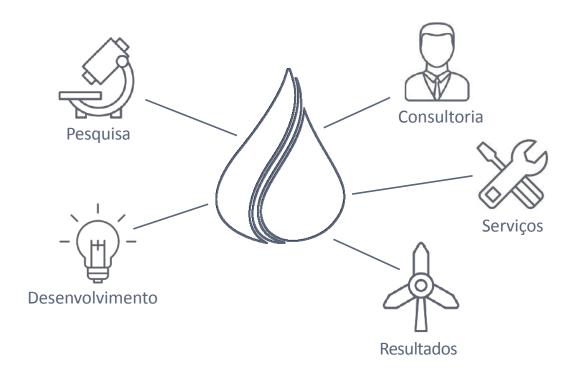


Tecnologia inteligente para recuperar engrenagens e rolamentos em turbinas eólicas

- Fundado em 2003 na cidade de Lahnau, estado de Hessia, na Alemanha
- Desenvolve, manufatura e distribui tratamentos para a recuperação e proteção de superfícies em sistemas tribológicos, baseados em nano e micro partículas de silício
- Ampla rede mundial de vendas e parceiros comerciais
- Co-fundador e sócio-gerente: Stefan Bill
- Patentes na Europa, China e nos EUA



EXEMITEC Somos mais que só um produto. **Somos REWITEC®**

Principais áreas de atuação

- ONSHORE
- OFFSHORE

INDÚSTRIA

- SIDERÚRICAS
- CIMENTO
- MINERAÇÃO
- ÓLEO & GÁS
- PAPEL E CELULOSE

MARÍTIMO

- TRANSPORTE MARÍTIMO
- TRANSPORTE FLÚVIAL
- BARCOS DE LAZER
 - SUBMARINO

AUTOMOTÍVO

- OEM
- TRANSPORTE RODOVIÁRIO
- TRANSPORTE DE PASSAGEIROS
- AUTOMÓVEIS PARTICULARES
- MOTOCICLETAS
- VEÍCULOS DE CORRIDA
- CARROS ANTIGOS

Exemplos de aplicação

Rolamentos do eixo principal

Engrenagens do pitch

Rolamentos do gerador

Rolamentos do pitch

Engrenagens do azimute

Mais que 3.500 engrenagens e rolamentos tratados em parques eólicos no mundo inteiro

Fabricante	Quantidade tratada	Modelos
AB Bonus	60	450 kW, 1.000 kW, 1.300 kW
DeWind	50	D4 (600 kW), D6 (1.000 kW), D8 (2.000 kW)
Gamesa	80	G47, G52, G8x
GE	1.200	GE1.5 sl, GE1.6, GE2.3, GE3.6
Goldwind	50	750 kW
HSW	10	1.000 kW
Jacobs	10	600 kW
NEC Micon	250	600 kW, 800 kW, 1.000 kW
Nordex	300	N43, N52, N54, N60, N80, N117/2400, S70, S77
REpower	10	5M
Siemens	40	1.000 kW, 1.300 kW, 2.300 kW
Sinovel	4	SL1500, SL82
Suzion	20	aplicações com graxa
Tacke	300	TW80, TW600, TW1.500
Vestas	400	V25, V39, V44, V47, V52, V66, V80, V90
CSC Haizhuang	2	2.000 kW VSCF

Maior vida útil do gearbox com DuraGear® W100

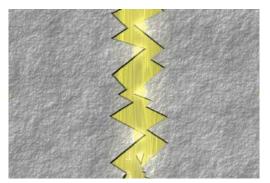
O processo de revestimento

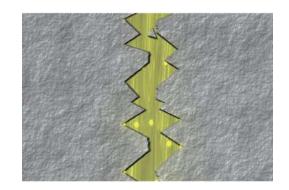
Passo 1

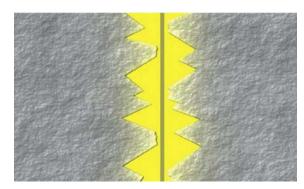
Processo Químico-Físico

O produto usa o lubrificante como meio de transporte para chegar até as áreas de atrito misto.

Passo 2


Reação Química


As partículas de revestimento ceramizam as superfícies metálicas nas áreas do atrito misto.


Passo 3

Nova superfície metal-ceramica

As propriedades dos materiais são melhoradas em relação ao atrito, as temperaturas e o desgaste, de forma significante, enquanto as características do lubrificante ficam inalteradas.

REWITEC GmbH

Apresentamos a seguir os resumos de casos de sucesso do ramo eólico e de estudos científicos.

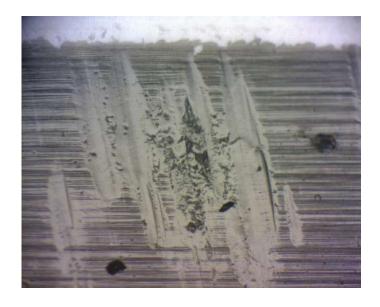
A pedido fornecemos todos de forma completa em formato PDF.

Solicite pelo nosso e-mail: info@rewitec.com.br

Aerogerador nº 01-14 no parque eólico União dos Ventos RN

- Depois uma boroscopia no início do ano de 2017 o fabricante informou que o equipamento terá ser substituído dentro dos próximos 5 meses, devido ao seu estado de conservação.
- Em abril de 2017 houve tratamento da caixa multiplicadora (gear box da marca Rexroth) de um aerogerador GE 1.6 MW em um parque eólico no Rio Grande do Norte.
- Houve tratamento com REWITEC® DuraGear® W100 e os resultados obtidos foram os seguintes:

Ring Gear antes da aplicação Rewitec® Ring Gear depois da aplicação



Micro-pitting bem visível nos flancos dos dentes

✓ Micro-pitting eliminado quase por completo

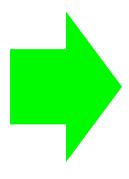


Imagem 3: Impressão da superfície antes da aplicação no gearbox da turbina eólica nº 01- 14

Micro-pitting visível

Imagem 4: Impressão da superfície depois da aplicação no gearbox da turbina eólica nº 01-14

√ Redução do Micro- pitting

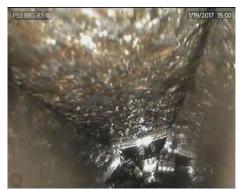


Imagem 5: Pista interna e elemento rodante do rolamento – lado do gerador, antes do tratamento

- > Forte escamação no material rodante
- > Pista com rugosidade acentuada

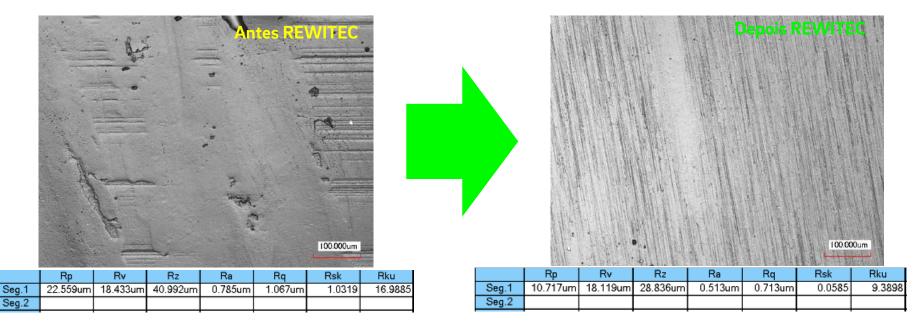


Imagem 6: Pista interna e elemento rodante do rolamento – lado do gerador, depois do tratamento

- √ Escamação bem reduzida
- √ Pista com rugosidade reduzida

Análise independente com um microscópio Keyence VK 9700 (microscópio de varredura a laser 3D colorido) pela Universidade de Giessen.

/ Melhora da rugosidade da superfície em mais que 30%

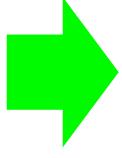
Placa de identificação do gearbox nº 73000002488 no parque eólico Asa Branca ABVIII

- Em 22 de junho de 2017 houve tratamento da caixa multiplicadora (gear box da marca Rexroth) de um aerogerador GE 1.6 MW em um parque eólico no Rio Grande do Norte.
- Houve tratamento com REWITEC® DuraGear® W100 e os resultados obtidos foram os seguintes:

Caixa multiplicadora Rexroth tratada em 22.06.2017

Antes da aplicação Rewitec®

- Desgaste operacional visível
- Micro-pitting nos flancos dos dentes


Depois da aplicação Rewitec®

- ✓ Melhora geral dos danos presentes no terço mais baixo
- √ Redução do Micro-pitting

Impressão da superfície antes da aplicação no gearbox da turbina eólica nº AB VIII - AEG 01

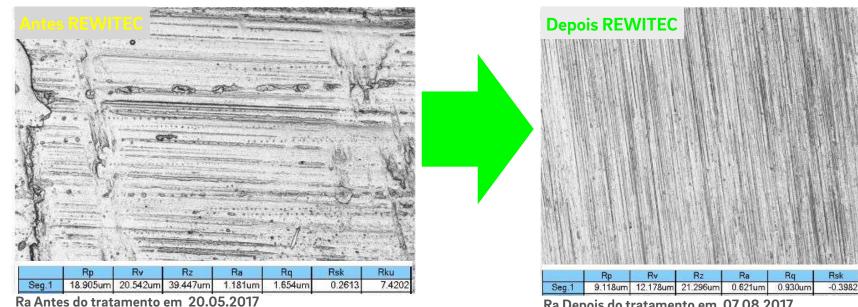
A estrutura da superfície apresenta micro pitting e scuffing

Impressão da superfície depois da aplicação no gearbox da turbina eólica nº AB VIII - AEG 01

- √ A estrutura da superfície foi suavizada
- ✓ O padrão de contato foi otimizado

Rolamento - LSIS rotor lateral, antes do tratamento

Visíveis sinais de desgaste, arranhões, pitting e entalhes



Rolamento – LSIS rotor lateral, depois do tratamento

√ Melhoras visíveis nas superfícies

Análise independente com um microscópio Keyence VK 9700 (microscópio de varredura a laser 3D colorido) pela Universidade de Giessen.

Ra Depois do tratamento em 07.08.2017

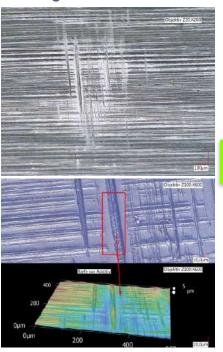
Melhora da rugosidade da superfície em mais que 40%

Desenvolvimento do desgaste em um flanco de dente em um gearbox Rexroth (GE 1.5 SL) durante um período de 2 anos

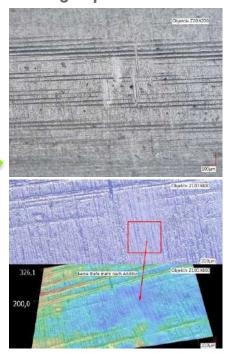
Rugosidade da superfície

- $R_a = 7,606 \mu m$
- $R_{z} = 238,547 \, \mu m$

Rugosidade da superfície


- $R_a = 3,464 \mu m$
- R₂ = 133,443 μm

✓ Redução da rugosidade da superfície (R₂) em até 54 %



Revestimento e análise da transmissão de uma turbina eólica GE 1.5 SL

Pitting antes:

Pitting depois 6 semanas:

- ✓ Menos estresse para o flanco do dente
- ✓ Redução da rugosidade da superfície e da força de atrito
- ✓ Melhor desempenho da capacidade de carga

Revestimento e análise de um black oxide rolamento de uma turbina eólica Nordex

2 meses após do comissionamento da turbina eólica

12 meses após do comissionamento da turbina eólica

18 meses após do comissionamento da turbina eólica, com REWITEC® DuraGear®

Revestimento e análise de uma transmissão de um gerador de energia eólica CSIC 2 MW VSCF

- Desgaste operacional bem visível
- Na base do flanco micro pitting visível

- Notável redução do desgaste operacional
- Redução do micro pitting
- Otimização das áreas de contato

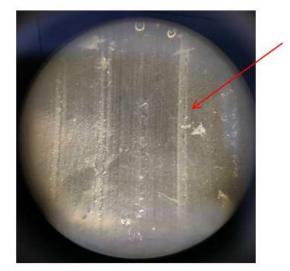
Revestimento e análise do rolamento do planetário de uma turbina eólica Nordex 2 MW

• Superfície do rolamento com rugosidades, antes do tratamento com REWITEC®

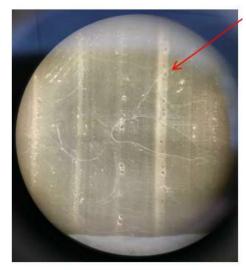
Superfície lisa do rolamento, após do tratamento com REWITEC®

Revestimento e análise de um rolamento principal de uma turbina eólica GE 1.5 MW

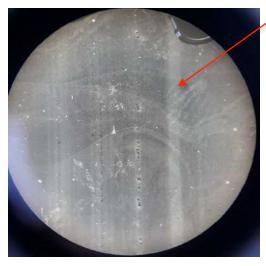
18 meses antes do tratamento com REWITEC®



5 meses após do tratamento com REWITEC®



Revestimento e análise de um rolamento principal de uma turbina eólica GE 1.5 MW



Antes do tratamento com REWITEC®

5 meses após do tratamento da turbina eólica com REWITEC®

12 meses após do tratamento da turbina eólica com REWITEC®

→ A seta vermelha mostra a mesma pista na impressão da superfície

Revestimento e análise de um rolamento principal de uma turbina eólica GE 1.5 MW

Antes do tratamento da turbina eólica com REWITEC®

 $R_a = 0.556 \,\mu\text{m}$ (dentro da pista)

5 meses após do tratamento da turbina eólica com REWITEC®

 $R_a = 0.403 \, \mu \text{m}$ (dentro da pista)

12 meses após do tratamento da turbina eólica com REWITEC®

 $R_a = 0.225 \,\mu\text{m}$ (dentro da pista)

A seta vermelha mostra a mesma pista na impressão da superfície

EXEMPTEC Bancada de teste ZF para multiplicadora eólica 2.5MW

Evolução de marcas run through

Fonte: www.zf.com

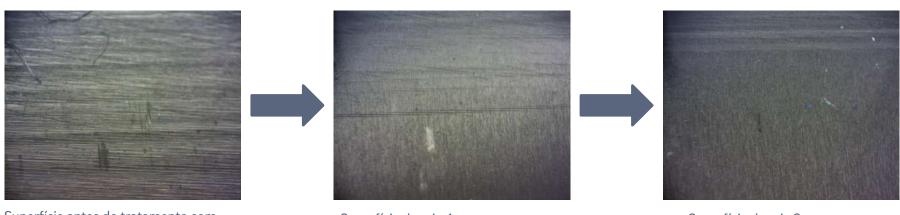
Bancada de teste ZF para multiplicadora eólica 2.5MW

Evolução de marcas run through

A impressão da superfície (decalque) foi examinada em um microscópio digital Keyence VHX-6000

Sz: 1.21 µm

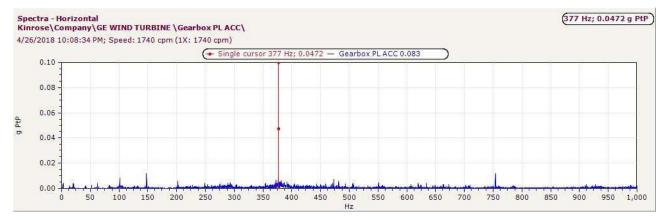
Redução da rugosidade das superfícies Sa em até 36,8 % e da Sz em até 43,8 %!

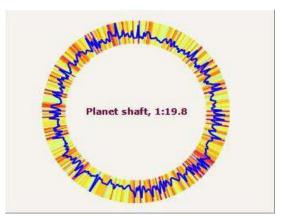

Sz: 0.68 µm

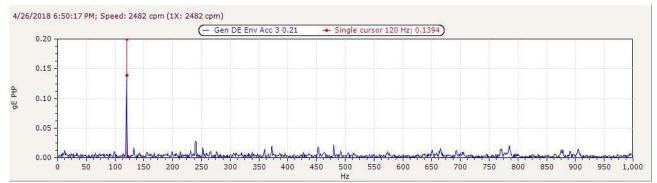
Bancada de teste ZF para multiplicadora eólica 2.5MW

Evolução de marcas run through

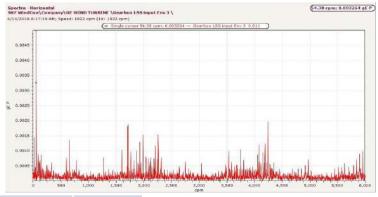
A impressão da superfície (decalque) foi examinada em um microscópio digital Keyence VHX-6000

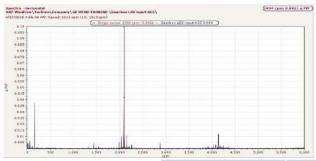

Superfície antes do tratamento com **REWITEC®**

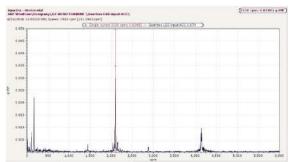

Superfície depois 4 semanas


Superfície depois 8 semanas

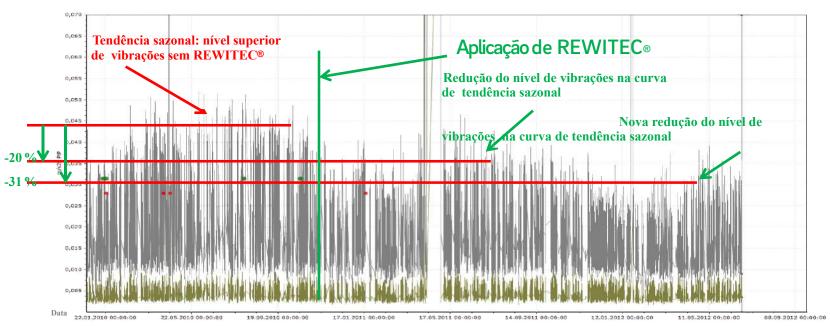
GE 1.5 MW - Pré Tratamento, mostrando desgaste elevado nos três gráficos a seguir:





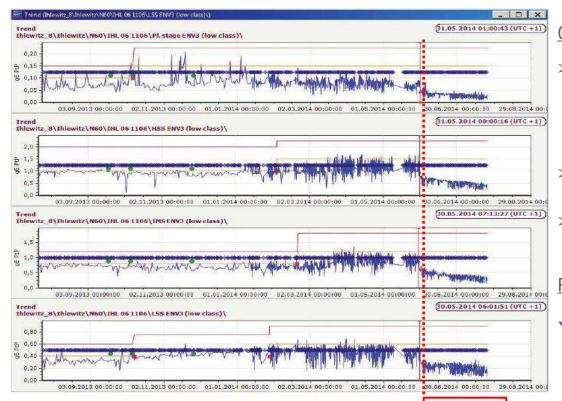

GE 1.5 MW Resultados do monitoramento das vibrações

Vibrações Pré tratamento	Vibrações Pós tratamento	Redução
0.018 G env.	0.011 G env.	aprox. 39%



Vibrações Pré tratamento	Vibrações Pós tratamento	Redução
0.0421 G env.	0.0349 G env.	aprox.20%

Exemplo de aplicação: Revestimento do gearbox de uma turbina eólica Tacke TW600



Redução do nível de vibrações (rugosidade na area da engrenagem) sobre a onda sazonal na tendência das vibrações:

- ✓ 1ª redução do nível de vibrações: até 20%
- ✓ 2ª redução do nível de vibrações: até 31 %

Relatório de aplicação: redução das vibrações

Objetivo da aplicação:

- Recuperação da superfície desgastada de um gearbox Nordex N60 com o concentrado de revestimento REWITEC® em maio 2014
- Proteção contra desgaste futuro bem como aumento da vida útil
- Análises das vibrações feita pela SKF Maintenance Services GmbH

Resultados após 2 meses:

✓ O relatório apresenta um quadro bem diferente. Detenção do nível de altas vibrações, redução da freguência de danos.

Ensaios e testes científicos

Testes Científicos

Valor da tensão: 10

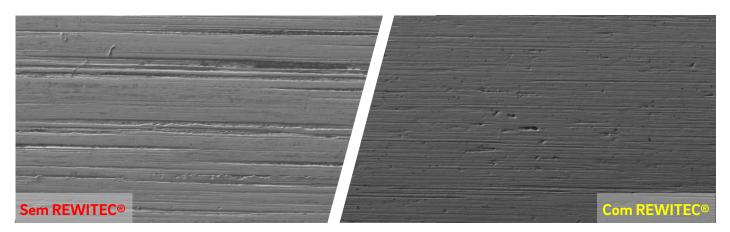
1 GPa (força normal 2150 N)

Velocidade de rotação: 424 rpm / 339 rpm, escorregamento 20 %.

A duração do teste: 39,3 h

Temperatura: temperatura de entrada do óleo 60 °C

Coeficiente de atrito: µ=força normal/força de atrito



Testes Científicos Teste de desgaste em uma bancada de rolagem com 2 discos

Imagens de microscópico eletrônico de varredura (S.E.M.) após 60 horas comparação 1:1

Teste de desgaste em uma bancada de rolagem com 2 discos

Após 60 horas de testes com óleo sintético Agip SX320*:

20% de redução das temperaturas em transmissões e rolamentos*

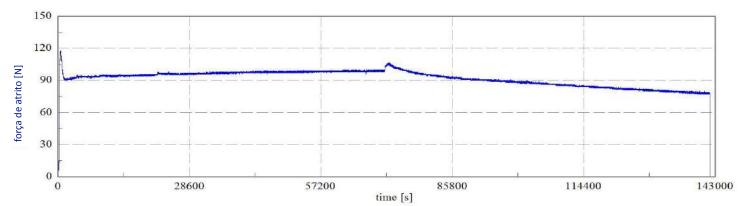
40% menos atrito em transmissões e rolamentos*

54% menos rugosidade em superfícies metálicas*

on the basis of a decision by the German Bundestag

^{*} Conforme ensaios na bancada de teste com 2 discos da Universidade de Mannheim de 2016

REWITEC GmbH



by the German Bundestag

Testes Científicos

Teste de desgaste em uma bancada de rolagem com 2 discos

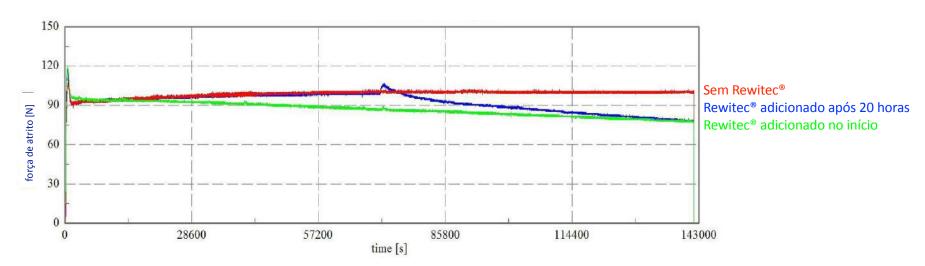
REWITEC 1 27-06-2014 | 4.7.2014

Castrol Optigear X320 com REWITEC® adicionado depois 19 horas e 39 minutos

$$R_{7}$$
 antes = 2,389 µm

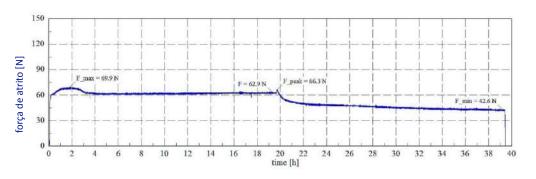
$$R_a$$
 antes = 0,360 μ m

$$R_z depois = 1,129 \mu m (-53 \%)$$

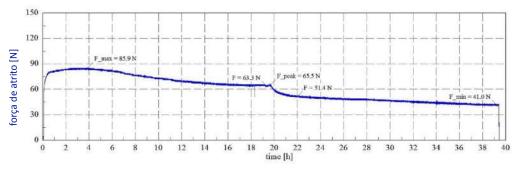

$$R_a depois = 0.180 \mu m (-50 \%)$$

Testes Científicos Teste de desgaste em uma bancada de rolagem com 2 discos

- Redução da rugosidade da superfície (Ra) em função de desgaste em até 58 %
- Redução da força de atrito em até 22 %


Supported by: Federal Ministry for Economic Affairs and Energy on the basis of a decision

by the German Bundestag

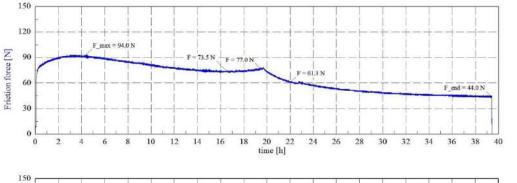


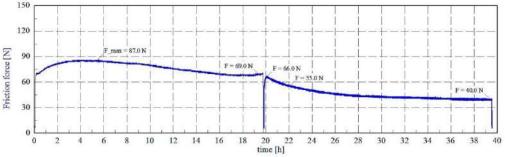
Testes Científicos

Teste de desgaste em uma bancada de rolagem com 2 discos

Castrol Optigear Synthetic X320 μ =0,0198

Mobilgear SHC XMP 320 μ =0,0191



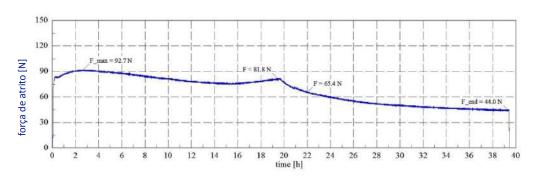

on the basis of a decision by the German Bundestag

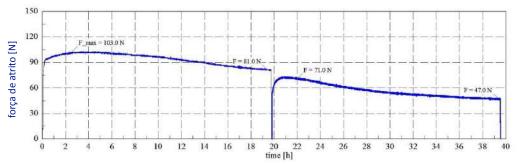
Testes Científicos

Teste de desgaste em uma bancada de rolagem com 2 discos

Klübersynth GEM 4-320N μ =0,0210

Fuchs Unisyn CLP 320 μ=0,0186



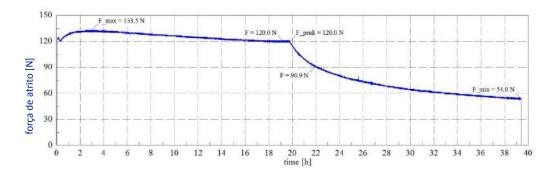


on the basis of a decision by the German Bundestag

Testes Científicos Teste de desgaste em uma bancada de rolagem com 2 discos

Amsoil PTN 320 μ =0,0205

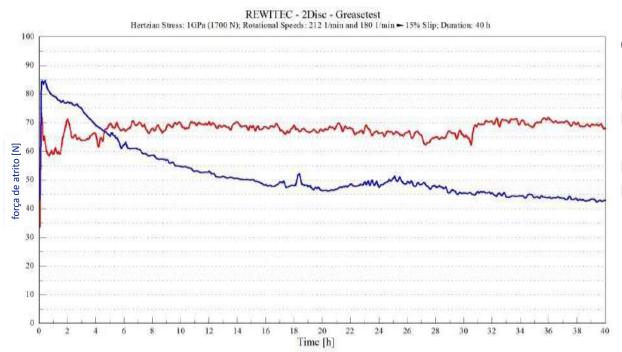
Shell Omala S4 GX 320 μ =0,0219



by the German Bundestag

Testes Científicos Teste de desgaste em uma bancada de rolagem com 2 discos

Klüberbio EG 2-150 μ=0,0251



Supported by:

on the basis of a decision by the German Bundestag

Testes Científicos Teste de desgaste em uma bancada de rolagem com 2 discos

Graxa FAG Arcanol Multitop

Hertzian Stress: 1700 N

Rotação: 212 min-1 e

180 min⁻¹

Deslizamento: 15 %

Duração: 40 h

Redução do atrito: 36%

Coeficiente de atrito: μ =0,0253

on the basis of a decision

by the German Bundestag

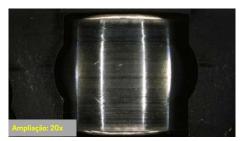
Testes Científicos Teste de desgaste em uma bancada de rolagem com 2 discos

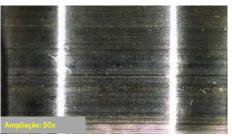
	Marca e especificação do óleo	Castrol	Mobilgear	Klübersynth	Klüberbio	Fuchs Unisyn	Amsoil	Shell Omala
		Optigear	SHC XMP	GEM 4-320N	EG 2-150	CLP 320	PTN 320	S4 GX 320
		Sintético X320	320					
Medições	R _a , antes [μm]	0,22	0,22	0,22	0,22	0,22	0,22	0,22
	R _a , depois [μm]	0,129	0,123	0,1	0,133	0,109	0,18	0,165
	R _a , Redução [%]	41	44	54	40	50	18	25
	R _z , antes [μm]	2,00	2,00	2,00	2,00	2,00	2,00	2,00
	R _z , depois [μm]	1,52	1,18	0,91	1,04	1,02	1,51	1,42
	R _z , Redução [%]	24	41	55	48	49	25	29
	Força de Atrito, antes [N]	62,9	63,3	73,5	120,0	69,0	81,8	81,0
	Força de Atrito, depois [N]	42,6	41,0	44,0	54,0	44,0	44,0	47,0
	Redução da Força de Atrito [%]	33	35	40	55	36	46	42

on the basis of a decision by the German Bundestag

Testes Científicos

REWITEC® na bancada de testes de rolamentos FE-8 com óleo sintético




by the German Bundestag

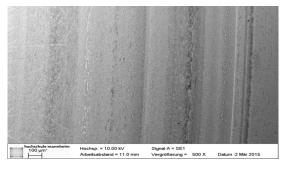
Testes Científicos

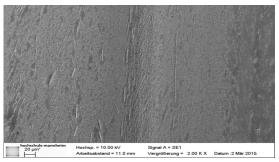
REWITEC® na bancada de testes de rolamentos FE-8 com óleo sintético

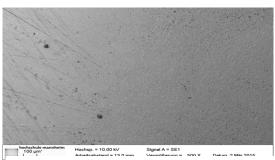
Imagens microscópicas de elementos rolantes do rolamento, Castrol X320 sem adição de REWITEC®

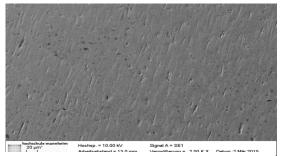
Imagens microscópicas de elementos rolantes do rolamento, Castrol X320 com adição de REWITEC®

REWITEC GmbH 48


on the basis of a decision


by the German Bundestag


Testes Científicos


REWITEC® na bancada de testes de rolamentos FE-8 com óleo sintético

Microscopia SEM dos elementos rolantes, Castrol X320, sem Rewitec®

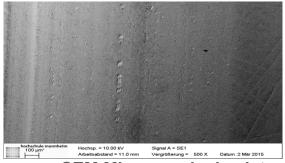
by the German Bundestag

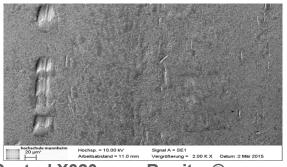
Testes Científicos

REWITEC® na bancada de testes de rolamentos FE-8 com óleo sintético

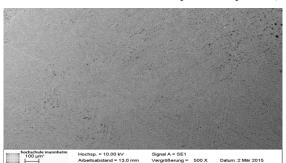
Imagens microscópicas do anel do rolamento, Castrol X320 sem adição de REWITEC®

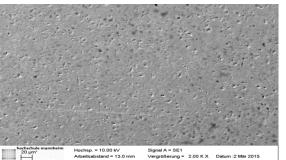
Imagens microscópicas do anel do rolamento, Castrol X320 com adição de REWITEC®





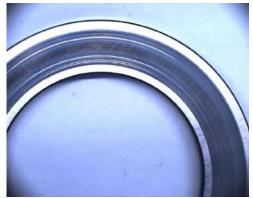
on the basis of a decision by the German Bundestag


Testes Científicos


REWITEC® na bancada de testes de rolamentos FE-8 com óleo sintético

SEM Microscopia da pista, Castrol X320, sem Rewitec®

SEM Microscopia da pista, Castrol X320, com Rewitec®


by the German Bundestag

Testes Científicos - Resultados

REWITEC® na bancada de testes de rolamentos FE-8 com óleo sintético

Teste 1: Castrol X320 sem REWITEC®

Redução de peso 1) Rolamento 1 0,318 g 0,326 g Rolamento 0,644 g Total

Teste 2: Castrol X320 com REWITEC®

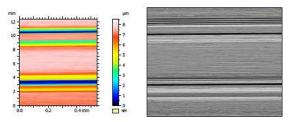
Redução de peso 1)

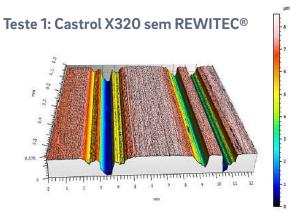
Rolamento 1	0,269 g
Rolamento 2	0,266 g
Total	0,535 g

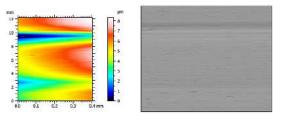
1) Perda de material pelo atrito (desgaste na superfície)

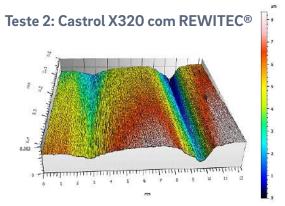
Resultado:

- √ 17 % menos desgaste com o uso de REWITEC®
- Superfície mais lisa


on the basis of a decision.


by the German Bundestag

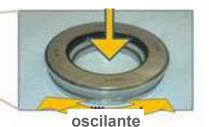



Testes Científicos - Resultados

REWITEC® na bancada de testes de rolamentos FE-8 com óleo sintético

Teste de False Brinelling para avaliar rolamentos do pitch bearing

Supported by: Federal Ministry for Economic Affairs and Energy



on the basis of a decision. by the German Bundestag

Bancada de

Dados

Motor trifásico: Ângulo de oscilação: Frequência de oscilação:

Carga:

Duração do ensaio:

REWITEC GmbH 54

3kW/ 20,3 Nm ±0,1° até ±3,0° 5

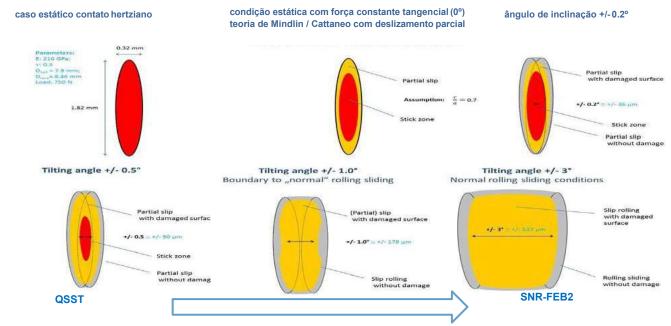
- 25 Hz

100 até 9000 N 1 minuto até 100 horas

Dados do rolamento 51206

Diâmetro: 41 mm Peso: 136 g Material: 100Cr6 62 +/2 HRC Dureza:

Supported by:



on the basis of a decision by the German Bundestag

Teste de False Brinelling para avaliar rolamentos do pitch bearing

Esboço: impacto do ângulo de rotação

Supported by:

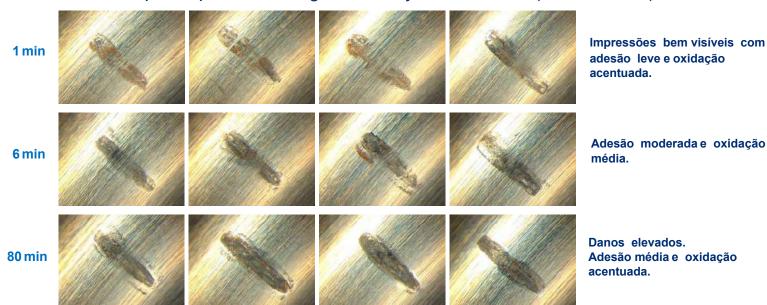
on the basis of a decision by the German Bundestag

Teste de False Brinelling para avaliar rolamentos do pitch bearing

Frequência:	25 Hz
Ângulo de oscilação:	+/- 0,5º
Carga axial:	3 kN (distribuido entre 4 esferas (750 N por sfera)
Temperatura:	Temperatura ambiente (-10º até 80º C possível)
Tempo de teste:	1 min.; 6 min.; 1,3 horas
Rolamento de teste:	ARKL tipo 51205 com 4 elementos rolantes / teste
Valores medidos:	Documentação ótica e avaliação
Número de amostras:	1 tipo de graxa
Documentação:	Fotos dos 16 marcas de desgaste após do teste e avaliação
Estatística:	Cada teste com 2 rolamentos (teste duplo, unidade esquerda e direita)

Este método de teste reflete a influência de um rolamento macroscopicamente estacionário com forças tangenciais variáveis, que são iniciadas devido a movimentos de giro muito pequenos ou devido a vibrações (teste de quase paralisação - teste QSS).

Supported by:



on the basis of a decision by the German Bundestag

Teste de False Brinelling para avaliar rolamentos do pitch bearing

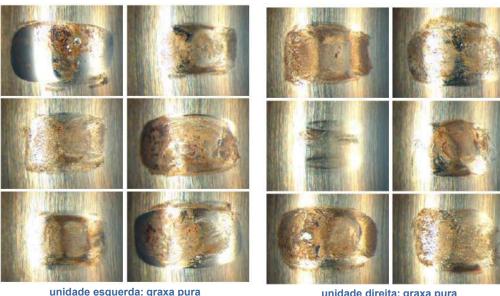
Teste de quase-parada com graxa Stabyl LX460 SYN (3 kN; +/- 0,5)

REWITEC GmbH 57

unidade esquerda

unidade direita

REWITEC® Protege. Sempre.


Supported by: Federal Ministry for Economic Affairs and Energy

on the basis of a decision. by the German Bundestag

Teste de False Brinelling para avaliar rolamentos do pitch bearing

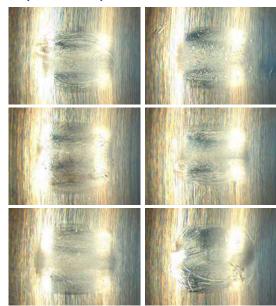
Superfícies após 3 horas com +/- 3°depois pré-danos 1,3 horas (3 kN; +/- 0,5) graxa pura - ensaios 2 e 3

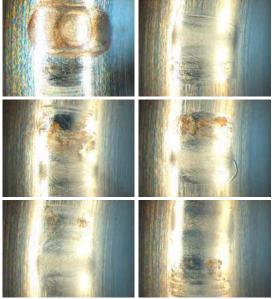
unidade direita: graxa pura

Com a graxa padrão as marcas apresentam oxidação clara.

Partículas abrasivas são depositadas na zona de contato.

Supported by:


Federal Ministry
for Economic Affairs
and Energy


on the basis of a decision by the German Bundestag

Teste de False Brinelling para avaliar rolamentos do pitch bearing

Superfícies após 3 horas com +/- 3°depois pré-danos 1,3 horas (3 kN; +/- 0,5) - modificado com Rewitec - ensaios 2 e 3

unidade esquerda: modificada com Rewitec ${\tt @}$

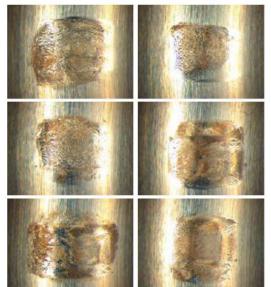
unidade direita: modificada com Rewitec®

Pode-se observar que as marcas são, em média, significativamente menos danificadas quando a Rewitec é adicionada.

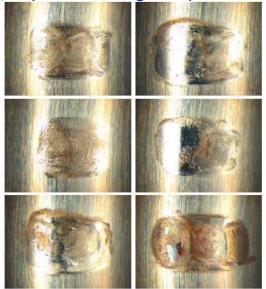
As oxidações no ponto de contato é significativamente menor.

Quase não se observa partículas de desgaste depositadas na zona de contato.

Supported by:


Federal Ministry
for Economic Affairs
and Energy

on the basis of a decision by the German Bundestag


Teste de False Brinelling para avaliar rolamentos do pitch bearing

Superfícies após 3 horas com +/- 3° sem pré-danos - graxa pura Stabyl LX 460 SYN

unidade esquerda: graxa pura

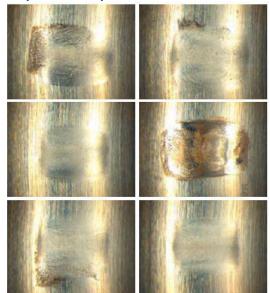
REWITEC GmbH

unidade direita: graxa pura

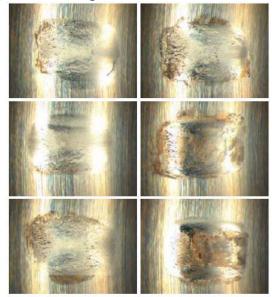
Em comparação com o teste com prédanificação, quase não há diferenças visíveis.

Novamente, visivelmente há uma oxidação mais forte em comparação com a graxa modificada (próximo slide).

Supported by:


Federal Ministry for Economic Affairs and Energy

on the basis of a decision by the German Bundestag


Teste de False Brinelling para avaliar rolamentos do pitch bearing

Superfícies após 3 horas com +/- 3° sem pré-danos - graxa modificada com Rewitec®

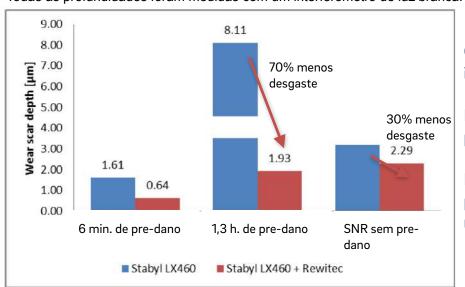
unidade esquerda: modificada com Rewitec®

REWITEC GmbH 61

unidade direita: modificada com Rewitec®

Em comparação com o teste de prédanificação, as diferenças não são muito grandes. Parece que a prédanificação não tem quase nenhuma influência.

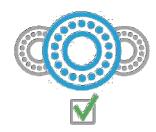
A graxa modificada parece ter fundamentalmente um melhor desempenho sob pequenos ângulos oscilantes do que a graxa base.



Teste de False Brinelling para avaliar rolamentos do pitch bearing

Visão geral da profundidade das marcas de desgaste

Todas as profundidades foram medidas com um interferômetro de luz branca.


Os valores são a média de pelo menos 8 marcas individuais.

É bem evidente que o uso de Rewitec reduz a profundidade das marcas de desgaste.

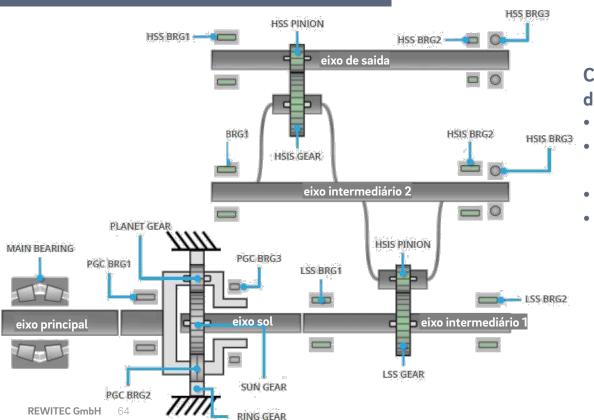
Especialmente as sérias com pré-danos por condições de parada mostram vantagens significantes da graxa modificada com Rewitec.

Sentient Science CÁLCULOS DA VIDA ÚTIL

DigitalClone® for Suppliers

Computational Testing of Mechanical Systems & Components

DigitalClone

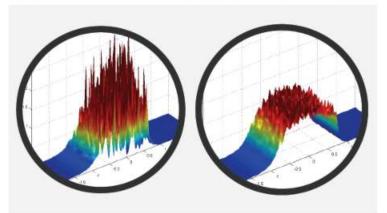

Testes computacionais de sistemas mecânicos e dos seus componentes

Análises do efeito do REWITEC® DuraGear® W100 sobre a vida útil de uma transmissão Winergy 4410.2 em um gerador de energia eólica GE 1.5MW

Sentient Science CÁLCULOS DA VIDA ÚTIL

Localização dos componentes da caixa multiplicadora

Cálculos do aumento da vida útil de:


- Engrenagem Planetária
- Engrenagem de alta velocidade
- Rolamento Planetário
- Rolamento do estágio intermediário

Revestimento e análise de um rolamento principal de uma turbina eólica GE 1.5

Para levar em conta a influência da micro-aspereza para determinar a resistência a fadiga, o modelo elastohidrodinâmica utilize os perfis da rugosidade das superfícies. O atrito das superfícies se refere as pressões transmitidos pelo lubrificante entre duas superfícies.

Os diagramas mostram as pressões das superfícies na interação entre duas modeladas superfícies rugosas (lado esquerdo) e duas superfícies lisas, tratadas com **REWITEC®** (lado direito).

Em rolamentos se prevê um aumento da vida de fadiga de contato pelo fator 3.3 com o tratamento REWITEC® DuraGear® W100 e GR400.

Para engrenagens, com o tratamento REWITEC® DuraGear® W100, se prevê um aumento da vida de fadiga de contato pelo fator 2.6.

Sentient Science CÁLCULOS DA VIDA ÚTIL

Rolamento do eixo intermediário de alta velocidade (HSIS) – pista interna

Resultados

DigitalClone® prevê que uma transmissão Winergy 4410.2 danificada, tratada com REWITEC® DuraGear® W100, têm a vida útil prolongada significativamente em relação a uma transmissão não tratada, sob condições operacionais representativas do gerador. Especialmente para rolamentos tratados com REWITEC® DuraGear® W100 espera-se uma melhora geral do período da fadiga de contato pelo fator 3.3. Com o tratamento REWITEC® DuraGear® W100 em transmissões, espera-se também uma melhora geral do período da fadiga de contato pelo fator 2.6.

lamanta da	Referência	16,6 anos	
rolamento do pinhão	tratado com	> 50 anos	
intermediário	Rewitec®		
memediano	prolongamento da vida útil	>3	
	Referência	4,3 anos	
rolamento do	Rewitec	14,2 anos	
planetário	prolongamento da vida útil	3.3	

Componente	Simulação	Duração L50	
rolamento do	Referência (danificado)	2,7 anos	
pinhão	tratado com	6.9 anos	
intermediário	Rewitec®	o,9 anos	
	prolongamento da vida útil		

Sentient Science CÁLCULOS DA VIDA ÚTIL

Aumento da vida útil pelo fator 2.6 - 3.3!

PRESSUNÇÕES	
Vida útil, taxa de falha L50	7,5%
valor presente custo de falha evitada	€ 200.000
Custo tratamento REWITEC® (por turbina)	€ 6.300
Turbinas no parque	50

AVALIAÇÃO DO VALOR DO NEGÓCIO	
Total de falhas por ano	3,75
valor presente custo de falhas evitadas por ano	€ 750.000
custo do tratamento REWITEC® para todas as turbinas	€ 315.000
Economia Total 1° ano	€ 435.000
ROI Retorno sobre o investimento	138%
Retorno	5 meses
Economia Total 2° ano	€ 750.000
ECONOMIA TOTAL EM 2 ANOS	€ 1.185.000

Menos atrito e temperaturas em sistemas tribológicos significa:

- ✓ Menos estresse e desgaste para engrenagens e rolamentos
- ✓ Menos estresse para os lubrificantes
- ✓ Eficiência maior
- ✓ Maior confiabilidade e disponibilidade, sem downtime
- ✓ Economia de custos, maiores ganhos
- ✓ Possível melhoria da vida útil pelo fator 2,6 3,3

Referências, parceiros comerciais e clientes

MARSH

O nosso muito obrigado pela sua atenção.

Vielen Dank!

REWITEC GmbH

Dr.-Hans-Wilhelmi-Weg 1

35633 Lahnau, Deutschland

Telefon: +49 (0) 6441 / 445 99-0

E-Mail: info@rewitec.com

GERMAN-TEC Distribuidora Ltda.

Importador e Distribuidor Exclusivo no Brasil

Av. Getúlio Vargas Nº 285 - Loja 33

29122-030 Vila Velha ES - Brasil

Telefone: +55 27 3077 3012

E-Mail: info@german-tec.com.br

www.rewitec.com

www.german-tec.com.br

Visite-nos no

